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Abstract—The traffic bandwidth costs comprise a significant
amount of operating expenditure in CDNs, induced by the traffic
from the end-users to edge servers (edge cost) and from the edge
to the center servers (midgress cost). Traffic allocation is the
main approach to minimizing the total bandwidth cost. The joint
optimization of the total costs is challenging, specifically when the
percentile charging mechanism as well as some other practical
issues are considered, such as the dynamicity of midgress traffic
and the granularity of traffic allocation. In this work, based on
our novel miss ratio prediction mechanism, we propose the first
online framework, named Iris, jointly optimizing the edge and
midgress costs under the 95th percentile charging in commercial
CDNs. Iris can theoretically achieve a competitive ratio of
1+ -B=, when the miss ratio of all domains is set as 3. Here p.

. b

and pccare the unit bandwidth price of the edge and midgress
cost, respectively. Iris is tolerant to prediction errors which can
be deployed in practical CDN systems. Extensive experiments
based on real data indicate that Iris can dramatically reduce
bandwidth costs by about 8.149% compared with the SOTA
schemes, potentially saving millions of dollars per month for
our large-scale commercial CDN collaborator.

I. INTRODUCTION

Content Delivery Networks (CDNs), deploying a large
number of edge cache servers worldwide, enable end-users
to obtain desired content nearby, which significantly reduces
network congestion and improves user experience. Nowadays,
with the explosion of online applications, e.g., high-definition
videos, online music and gaming, CDNs carry massive net-
work traffic globally and suffer an increasingly higher band-
width cost [1]. It is reported that data transmission in CDNs
will reach 250 EB recently, taking more than 72% of the
network transmission [2]. As a consequence, a CDN system
could incur a bandwidth cost of millions of dollars per month,
and even a small fraction of bandwidth reduction translates
into massive monetary savings.

CDN companies pay bandwidth costs to Internet Service
Providers (ISP) for all outbound traffic, which consists of
edge traffic and midgress traffic. When serving an end-user,
a CDN allocates the request to one selected edge server. If the
requested content is available at the edge, a cache hit occurs.
Otherwise, it is a miss and the content will be fetched from the
remote center server to the edge. The edge traffic at each time
interval is the sum of the requested file sizes returned from
the edge server to users, and the midgress traffic is the sum
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of the file sizes sent from the center server to edge servers.
Both edge traffic and midgress traffic follow the industry-
standard 95th percentile charging scheme to pay bandwidth
fees. Specifically, the ISP records the traffic bandwidth of the
server at all time intervals to form a traffic sequence and takes
the 95th percentile of the sequence as the charging bandwidth.
The 5% time intervals when the bandwidth is higher than the
charging bandwidth are free-of-charge. The charging band-
width multiplied by the unit price is the bandwidth cost of a
server. This scheme can prevent excessive penalties on CDN
companies due to occasional surges in traffic [3], and it has
become the commercial charging scheme widely adopted.

The traffic allocation strategy plays a critical role in re-
ducing data transmission and bandwidth costs. Most existing
studies only focus on the optimization of either the bandwidth
cost of edge traffic or that of midgress traffic, which are
called edge cost and midgress cost, respectively. Under the
95th percentile charging, the reduction of edge costs usually
requires to use of the free-of-charge intervals of some edge
servers by turns to reduce the allocated bandwidth of other
edge servers in most intervals [1]. However, frequent changes
in this allocation strategy increase miss ratios of requests
on edge servers, resulting in high midgress costs. At the
other extreme, the allocation strategy may make requests for
the same content be satisfied by a fixed server to improve
the hit ratio, thereby reducing the midgress cost [4]. This
approach may significantly increase edge costs due to the
inability to adapt to sudden traffic peaks. Therefore, both of
the above intuitive strategies will incur high total costs, and
joint optimization of the edge and midgress costs is desired.
However, it is full of challenges under the 95th percentile
charging scheme in the following three ways:

« Non-linearity of charging scheme: The percentile charging
scheme introduces some free time intervals, and this non-
linearity makes optimization extraordinarily complicated in
large-scale CDNss.

« Dynamicity of Midgress traffic: When jointly optimizing
edge costs and the midgress cost, it is difficult to evaluate
the performance of real-time allocation policies due to the
dynamicity of midgress traffic. As the caching data on edge
servers changes over time, the midgress traffic that the center
server send to edge servers due to cache miss may vibrate.
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Moreover, our analysis on a commercial CDN shows that
as the cache space occupied by different types of requests
varies, their cache miss ratios change at different rates.

« Limitations of allocation policies: Traffic allocation poli-
cies are implemented through the Domain Name System
(DNS), so a practical approach can not divide the traffic
infinitely but with an allocation granularity. Moreover, due
to the limitation of hardware, the system can not accurately
follow our policy which will also influence its performance.
In this work, we tackle the above challenges by analyzing

the opportunity of bandwidth cost saving on 95th percentile

charging, designing traffic allocation policies that reduce total
bandwidth costs by explicitly incorporating midgress cost and
making full use of the free-of-charge intervals on edge servers.

Our main contribution is as follows:

« Practical model. To the best of our knowledge, this is the
first work to minimize both the edge and midgress costs
under the percentile charging in CDNs. We take the practical
issues into account, which are full of challenges due to
the nonlinear charging as well as the complicated mutual
influence between the edge and midgress costs.

o Miss ratios prediction. To estimate the midgress costs of
traffic allocation policies, we design a mechanism that can
accurately model and predict the cache miss ratio when
multiple types of traffic share a single cache. Extensive
experiments on commercial CDNs demonstrate that our
mechanism has a prediction error of 1.804% on average.

¢ Online midgress-sensitive joint optimization framework.
Based on the midgress cost prediction, we devise the first
online framework Iris that can jointly optimize the edge
and midgress costs. We prove that when the miss ratio is a
constant 3, the competitive ratio of Trisis 1+ ﬁ-;c , Where
pe and p. are the bandwidth unit price of edge servers and
center server, respectively. We further adapt Iris to make
it tolerant to practical issues such as prediction errors.

« Evaluation based on commercial CDN. Extensive exper-
iments on a large-scale commercial CDN trace illustrate
that Tris can reduce bandwidth costs by about 8.149%
compared to the state-of-the algorithms, potentially saving
millions of dollars per month. Furthermore, Iris performs
consistently well on various settings of the granularity, the
number as well as the cache sizes of servers.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Cache System. Consider a CDN system with K edge cache
servers and one center server c. For each edge server k, the
bandwidth capacity is By, and the cache size is C. We assume
that the bandwidth capacity and cache size of the center server
are unlimited. Each cache server adopts a replacement strategy,
e.g., one of the extensions or variants of LRU [5].

Traffic Allocation. The traffic allocation process in CDNss is
shown in Fig. 1. Users access network resources with domain
names. A CDN system sends the requested domain name to the
DNS server, which stores an IP table mapping domain names
to edge servers’ IP addresses. Based on the traffic allocation
framework, the DNS server adjusts the proportion of the traffic
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Fig. 1. An illustration of the traffic allocation process in CDNs.

for one domain to several edge servers by controlling the
number of IP addresses (Fig. 1®) !. As shown in Fig. 1.®, both
edge server 1 and 2 receive half of the Domain 1°s traffic. The
user accesses one of the IP addresses to obtain the resources
(Fig. 1.@©). If the edge server has the requested content, it
delivers the content to the user directly. If not, a cache miss
occurs and the edge server fetches the content from the center
server, where we assume all contents are stored (Fig. 1.®).
Percentile Charging Mechanism. The bandwidth cost on a
server can be calculated as p x x, where x is the charging
bandwidth for a charging period and p is the unit bandwidth
price. In practical CDNs, the bandwidth unit price p. of a
center server is about two times that of edge servers p. due to
higher construction cost. Vector V' = (vy, v, -+ , vz, ,vr)
denotes the total traffic of all 1" time intervals, and V;, =
(v¥, - vk) denotes the traffic allocated to server k. Note
that in our online setting, each v; is unknown until interval
t. Under the percentile charging, after obtaining the traffic
sequence Vj, of server k, we sort V}, in ascending order and
let the | ¢ x T'|-th value be the charging bandwidth represented
as Q(Vk, q). Here g is the charging quantile.

Problem Formulation. At interval ¢, we have h‘f traffic for
domain d. Set ,Btk 4 as the miss ratio of edge server k. The
bandwidth allocated to edge server k at ¢ is vf = ", np**ghd,
where g is the allocation granularity and nf’d is an integer
(nf"® € [0,1/g]). Our goal is to minimize the total costs by
determining how many requests are allocated to each edge
server at each interval. The problem can be formalized as:

minimize p, i Q(V4,0.95) + p.Q(V.,0.95)
k=1
s.t. vf = nf’dghf < By, VEk,t (1)
d
ve=Y vf =Y h vt (2)
k d
vp =Y By ghd, vt (3)
nkd ek{o,i,zm s vd, k,t (4)

I Therefore, traffic bandwidth for a domain can only be allocated at a certain
granularity g, typically g € [1%, 5%).
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When the traffic arrives at interval ¢, we give a real-time traffic
allocation scheme, where the allocated bandwidth to each edge
server can not exceed its capacity Bj (Constraint (1)). Traffic
for each interval needs to be all allocated (Constraint (2)). The
traffic bandwidth v on the edge server k at interval ¢ should be
the sum of an integer multiple of the domain traffic granularity
(Constraint (1)(4)). And the center server’s bandwidth vy is the
sum of the midgress traffic of all domains (Constraint (3)).

Problem Hardness. Even in an offline setting with perfect
knowledge of traffic, the traffic allocation problem is still hard.

Theorem 1. There is no polynomial-time algorithm that can
achieve an optimal solution for the traffic allocation problem
based on the 95th charging scheme when the miss ratio is
constant 3 € (0,1], unless P=NP.

Proof. Please refer to Appendix A. O

III. DESIGN OF OUR FRAMEWORK IRTIS

The key idea of Iris is to solve the joint optimization
problem in layers. As shown in Fig. 2, the first layer contains a
scheduler and a percentile predictor to guide traffic allocation
to each edge server at each time interval. The second layer
includes a cache miss ratio predictor and a selector to select
the estimated best allocation policy. Totally Iris consists of 4
key components. Percentile Predictor quantifies opportunities
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Fig. 2. The design of our traffic allocation framework Iris.

for bandwidth cost savings on edge servers, which are related
to the 95th percentile value of the total traffic sequences and
the theoretical optimal percentile value. We present a CRNN-
based model to predict these two parameters accurately (in
Sec. III-A). Traffic Scheduler determines the traffic allocated
to each edge server at each interval. Based on the two predicted
key parameters, we design a region-based traffic allocation
algorithm and further prove that the competitive ratio of this
algorithm is 1 + p./(8 - p.), where [ is the missing ratio
of all domains on the edge server (in Sec. III-B). Miss
Ratio Predictor estimates the midgress cost of an allocation
policy. It takes the output of the first-layer framework as soft
constraints to generate a set of feasible allocation policies. We
design a traffic descriptor that can estimate the midgress cost
of these feasible policies based on historical statistics in real-
time (in Sec. III-C). Policy Selector selects the policy with
the lowest estimated cost to configure the DNS server, which
is highly tolerant to the miss ratio prediction errors. Next, we
will present a detailed description of each component.

A. Percentile Predictor

Due to network traffic dynamics, it is hard to estimate the
percentiles accurately in advance, especially in the early days
of a charging period. We have a key observation that the
scale of the traffic typically has an increasing or decreasing
trend depending on the historical cycle and the periodical
commercial market. There is also a day-to-day variance within
a charging period, which can be quantitatively identified by
comparing the percentiles of two adjacent days. We propose
a CRNN-based prediction model fully utilizing the above
characteristic. We here integrate two main modifications: 1)
we predict a list of quantiles ¢ = {q1,q2," - @, -}, Where
q; € {0.60,0.61,...,0.98,0.99}. Therefore, the predicted traf-
fic value is a real-valued vector g instead of a scalar p. Each
element of p'is a traffic value that corresponds to a quantile in
g, e.8., pq is the predicted traffic value of the ¢ quantile. The
loss function is L = ||~ ¢||?, where i is a vector of ground
truth traffic values. 2) We concatenate the trend of the traffic
as features into the input matrix X of our model. Specifically,
a vector J? is calculated as the percentile traffic values of i-th
row of traffic sequence of X, where each element J; of J¥ is
a predicted percentile traffic value with ¢ € ¢. The vector J*
is concatenated into the i-th row of the input matrix X.

The performance of our model is evaluated by the average

dicti ision. defined 1 1yK > 10k -yl
prediction precision, defined as p = 1 — 4 i ST

where p;'» is the predicted j percentile of group ¢, yJz is the
corresponding ground truth, and K is the number of edge
server groups. We compare the performance of our model
with the original CRNN model [6], RNN model [7] and
Percentile model [8]. As shown in Fig. 3, our model predicts
the percentiles accurately even in the early stage of a month,
and outperforms other models.
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Fig. 3. The precision of the Quantile Prediction Model.

We use this model to predict the two key parameters of total
traffic sequence V' in a charging period, which are respectively
95th percentile and max(100 — K x 5,0)-th percentile value,
which has been proved to be the optimal charging bandwidth
under the 95th charging mechanism without considering band-
width capacity limitation [9].

B. Traffic Scheduler

Traffic scheduler determines how much traffic should be
allocated to each edge server at each interval to reduce the
overall edge cost. The design of traffic scheduler is based on
the critical insight: 1) Neither the edge cost nor the midgress
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cost is directly related to the free-of-charge intervals. 2) The
traffic allocation policy will not increase the edge costs, as long
as the traffic allocated to each edge server does not exceed its
own charging bandwidth.

Accordingly, the traffic scheduler will calculate an estimated

charging bandwidth for each edge server, named red line.
Naturally, the number of intervals where the allocated traffic
exceeds the red line should be no more than 5% x T". However,
there may be a deviation in the prediction of the percentile
value in practice. Thus, we should use the bandwidth capacity
below the red line conservatively to avoid the unexpected
increase in the charging bandwidth. Next, we will introduce
two key strategies of the traffic scheduler for this purpose: 1)
bandwidth capacity division based on the percentile predictor
and 2) traffic allocation in real time.
Bandwidth Capacity Division. We divide the bandwidth
capacity of edge server k into three zones: red, blue, and
green, separated by the red line (RI;) and the blue line
(Blg). Due to this key procedure, we vividly name our traffic
allocation framework as Iris. The red zone above the red
line indicates the capacity with the number of usages less than
5% x T'. Below the blue line is the blue zone, which represents
the capacity that can be used at will. Between the red and
blue lines is the green zone, which is further divided equally
into multiple gears. The two key parameters predicted by the
percentile predictor are represented by Z; and Z;, which are
respectively the sum of the red and blue lines of edge servers.
In Algorithm 1, we make the red zone of each edge server
as numerically equal as possible, which helps to balance the
number of red zones used in the edge server to cope with the
possible burst traffic peak (Line 1-5). Accordingly, we divide
the total blue line into blue zones according to the ratio of the
red line of an edge server to the total red line (Line 6-7). And
then, we divide the green zone evenly into N gears, which is
an adjustable hyperparameter (Line 9-11).

Algorithm 1: Bandwidth Capacity Division

Input: {By}, Z),, Z;, number of the gears: N
1 Sort {By} in descending order
2 B« ), By, RedSum < B — Z,
3fork=Ktoldo
4 Rly, + By, — min(RedSum/k, By,)
5 RedSum < RedSum — min(RedSum/k, By)
6 for k € [1, K] do
7 | Bly+ 2, % Geary[0].id < k
8 Gearg|0].size < Bly, Gearg[0].value < Bl
9 for n € [1,N] do
10 Geary[n].size + Bl
1 Gearg[n].value < Bl +n -

, Geargln].id + k
Rl— Bl
N

12 return {Rl;}, {Bli}, {Geary}

Online Traffic Allocation. The key idea of the online traffic
allocation algorithm is to use the gear with the lowest value
and the least usage number for intervals with traffic that may

affect the charging bandwidth, and to fill up the bandwidth
capacity of some servers for the 5% intervals with the largest
traffic. In particular, Algorithm 2 first calculates the total traffic
vy of the current interval, the sum of the red lines of edge
servers as Z;L and the sum of the blue lines as Zl/ (Line 3-4).
Then, according to the numerical relationship between v; and
VA ;L and Zl/ , the allocation strategy is considered in three cases:
1) When vy > Z,/L, fill the blue zones of each server first, and
allocate the remaining traffic as much as possible to the server
with the least number of times of use at the highest gear (Line
5-11). 2) When Zl/ <y < Z,'I, we use the lowest gear of each
server first, and give priority to the gear of the server that is
used less frequently. If the traffic is still not fully allocated,
higher gears of edge servers are used (Line 12-21). 3) When
vy < Zl/ , we use a load balancing strategy, which allocates
the total traffic according to the ratio Bl /Zl/ (Line 22-25).
After the traffic allocation is completed, the statistics of the
gear are updated. If the usage times of a certain gear exceed
F = 5% x T, the blue line of the edge server is modified to
the bandwidth value of this gear (Line 26-28).

Analysis. Let A(P) and OPT(P) be respectively the total
cost of our online algorithm A and offline optimal solution
of Problem P. If the percentile predictor is accurate for Zj,
then we have the following theorem.

Theorem 2. A(P) < (1+ £=) OPT(P) when the miss ratio

of user requests for each domain name on edge servers is a
constant f3.

Proof. Since Bf 4 — [, the midgress traffic of time interval %
is vy =, > 48 nFdgnd) = B>, vE = Bu. Therefore,
the midgress cost of the solution of algorithm A and the
optimal solution under the 95 charging mechanism are both
PeQ(Ve,0.95) = pBQ(V,0.95) = p.BZy. Thus OPT(P) >
pefBZy,. For algorithm A, we only use the red zone of edge
servers when the traffic is greater than Zj;,. When the prediction
of Zj, is accurate, only 5%=T intervals have traffic greater than
Zp, which means that the charging bandwidth of each edge
server is not greater than Rlj. Therefore, the bandwidth cost
of edge servers satisfies p. y_, Q(V%,0.95) < pe >, Rl =

PeZp. Thus, Oﬁég) < PeBIntpeln _ q 4 .

Pe
PeBZn Bpc”

Furthermore, we have the following theorem if the predic-
tion of 7}, is inaccurate.

Theorem 3. If there is an error ¢ in the prediction of Zp,
that is, Zp, = (1 + €)Q(V,0.95), then we have the following
inequality:

AP) _ [T+ e, ifez0 o
— < i
OPT(P) = |14 LeZimt 24 if e <
Proof. Due to the space limitation, we omit the proof. L

C. Miss Ratio Predictor

The above algorithm has theoretical guarantees when the
miss ratio is constant, which in practice varies depending on
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Algorithm 2: Online Traffic Allocation
Imput: {Geary}, Zyn, Z;, F

1 for k € [1, K] and n € [0, N] do

2 | TInitialize Gear[n].usage + 0

When domain name traffic {h¢} arrive at interval ¢
V=Yg h, used + @, Z,/L — Zn, Zl/ — > . Bl
if v; > Z,; then
used <+ {Geari[N]|k € [1, K]}, {vF} < {Bly}
Sort used in ascending order by usage
for u € used and Y, vF < v; do

k < w.id, vF + min(vy, Bg), vy ¢ vy — vF
10 for n € [0, N] and Gearg[n].value < v} do
1 L Gearg[n].usage < Geary[n].usage + 1

R-RE-CHEE - 7 B )

12 else if Zl/ <y < Z,IL then

13 index < 0, notFinished < True

14 while notFinished do

15 used + {Geari[index]|k € [1, K]}

16 Sort used in ascending order by usage
17 for u € used and vy > 0 do

18 k < w.id, vf + oF + min(v;, u.size)
19 vy < vy — min(vg, u.size)

20 u.usage < u.usage + 1

21 index < index + 1

22 else if v; < Zl/ then
23 for k € [1, K] and v, > 0 do

24 vF < vy * BZZ,’“
1
25 Gearg|0].usage < Geary[0].usage + 1

26 for k € [1, K] and n € [0, N| do
27 if Gearg[n] > F then
28 L Bly, + Gearg[n].value

29 return {v}}

time and allocation policies. Therefore we design a predictor
to estimate the midgress traffic a traffic allocation policy may
generate, and to guide the policy selector. Specifically, the
predictor will predict the miss ratio of each domain’s requests
on each edge server, i.e., ﬂf ’d, based on the historical traffic
allocation information, thereby calculating the midgress traffic.
Different from the 3C’s (cold, conflict, capacity) model of
CPU cache proposed in [10], cache misses in CDNs are mainly
caused by cold miss and capacity miss. A cold miss occurs
when a file is requested for the first time in a cache. A capacity
miss occurs when a requested file is evicted due to too many
different files entering the cache since the last reference. We
analyze these two kinds of misses separately. The miss ratio
of a domain d’s traffic sequence at cache size C' is the sum
of cold miss ratio mr¢ and capacity miss ratio mr{(C).
Cold Miss. We use mr, to represent the cold miss ratio. For a
request sequence p of length [, let a; denote the number of files
requested ¢ times in p that have never been requested in the

cache before. Therefore, the cold miss ratio of sequence p in an
empty cache is ), a;/l. Define f; = i*a;/l as the probability
that the file request frequency is ¢. If the request of p is
randomly assigned to another empty cache with probability
v, we have the following lemma.

Lemma 1. mr.(y) =", fi - W

Proof. Please refer to Appendix B. O

The cache on the edge server may be non-empty due to
previous traffic. Let p’ denote the previous request sequence,
N; ; denote the number of files that appear j times in the
sequence p’ and appear 7 times in the current request sequence
p. If requests in sequences p’ and p are allocated to the cache
server with probability ~, we have the following lemma.

Lemma 2. f;i =i}, M

Proof. For each file in p’ that is requested j times, the
probability that it is not allocated to the cache server is
(1 =)’ Thus, a; = 3>, N; ;(1 — ). O

In the process of online traffic allocation, we may need
to adjust v every once in a while. Therefore, we define the
parameter w, for the file r, which represents the probability
that file r has not appeared in the cache before. Suppose
interval ¢’s request sequence p; is allocated to the cache server
with probability ;. If file r is requested j times in p;, w, is
updated to w,. - (1 —~;)? and a; = ZreRi w, (R; is the set of
files requested ¢ times). By combining Lemma 1 and Lemma
2 together, we have the following theorem.

Theorem 4. If requests in sequence p; at interval t are
allocated with probability v, to a non-empty cache, the cold

miss ratio of p; is Y ;> e, wrll — (1 =)/ (7).

In practical CDN systems, we find that if the time interval
is divided into 5 minutes, the probability f; of the file request
frequency of adjacent intervals is similar. Thus, the probability
distribution F = {f;} of the last interval can be used for
predicting the cold miss ratio of the current interval.
Capacity Miss. We denote the capacity miss ratio by mr, and
design a traffic descriptor to calculate it. The traffic descriptor
is a probability distribution of a reuse distance [11] for domain
traffic. A traffic descriptor can be represented by a tuple T'd =
(I,p"(z)). 1 is the length of request sequence. p"(x) is the
probability distribution that a reuse sequence of the domain
traffic has x unique files. The capacity miss ratio at cache
size C' can be calculated by mr,(C) = > .~ p" ().

Let T'd; = (l1,p}(x)) be the traffic descriptors of a domain
traffic sequence p;. If requests in sequences p; are allocated to
the cache server with probability v, the new traffic descriptor
can be calculated using the operation scaling (®), i.e., T'd =
v O Tdy = {y-l,pi(z)).

Let Tdy = (l1,p}(x)) and T'ds = (l2, p5(x)) be the traffic
descriptors of two domain traffic sequences. The capacity miss
ratio of a traffic mix at cache size C' can be computed by
operation addition (&), whose rules are mry(C) = T'dy &

Tdy=1[h), ne pi()+l,  ne py(x)]/(lh+ 1)
ly+l2 FERD)
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By combining operation addition and operation scaling, we
can compute the miss ratio for complex domain traffic mixes.
For example, assume half of requests for domain d; and all
requests for domain do are allocated to an edge server with
cache size C. The descriptors of d; and ds are denoted by
Td; and T'd2. We have the capacity miss ratio mr,(C) =
(1/2©Tdy) & Tds. Then the total miss ratio of mixed traffic
is mr(C) = [(1/2)lymr® + lamrd2] /(11 /2 + 12) + mry(O).

D. Policy Selector
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Fig. 4. The miss rate curves (MRCs) of different allocation ratio.

The policy selector selects the appropriate policy from the
set of all the policies S for configuring the DNS server based
on the information provided by the miss ratio predictor. As
shown in Fig. 4, although the miss ratio predictor basically
agrees with the simulation curve, there is still a certain pre-
diction error when the cache size is small. This is because the
error caused by the random allocation of requests is amplified.
We provide a fault-tolerant policy selector in Algorithm 3.
When the prediction error of the last interval is less than
a certain threshold enax, the policy selector calculates the
estimated cost of each policy in set S (Line 3). The estimated
cost is defined as p.A. + p.A., where A, and A, are the
additional costs incurred in edge cost and midgress cost,
respectively. Then the policy with the smallest estimated cost is
selected as the output policy (Line 4-12). Otherwise, when the
prediction error is large, the policy selector chooses to greedily
allocate domain traffic (Line 13). Since a larger allocation ratio
n - g of domain traffic means a lower miss ratio, Algorithm 3
takes the output vf of the traffic scheduler as a soft constraint,
and allocates the traffic of a domain name to the same edge
server as much as possible (Line 14-18).

IV. PERFORMANCE EVALUATION

We conduct extensive evaluations in two steps: 1) evaluate
the performance of our miss ratio predictor in a large-scale
commercial CDN system and further validate it on two widely-
used datasets: the production trace from Google [12] and the
system benchmark of YCSB workloads from Yahoo [13]. We
compare our miss ratio predictor with the footprint descriptor
in [14] (in Sec. IV-A). 2) Applying the miss ratio predictor in
our online traffic allocation framework Iris, we evaluate its
performance in a large-scale commercial CDN system, and
compare Iris with several state-of-the-art baselines, e.g.,
Cascara [1], GIA [9], Load-Balance, and Baseline-Fit (in Sec.
IV-B). We highlight our key findings as follows.

Algorithm 3: Policy Selection
Input: {vF}, {v§}, {Blk}, S, €maxs Pes Pe

1 error < 0, best <+ @&
2 When domain name traffic {h¢} arrive at interval ¢
3 if error < e,,4, then
4 for s € S do
5 Calculate {0F} from s and {h{}.
6 veg <— MissRatioPredictor(s), A, < 0
7 A, + 95th of {v§}— 95th of {v§} U {ves}
8 for k € [1, K] do
9 if ¥ > Bl), > vf then
10 | Ac Ao+ (0F — Bly,)
1 | EstimatedCost < poAc + pcA.
12 | best « s € S with the minimum EstimatedCost
13 else
14 Sort {h{} in descending order.
15 for d € D do
16 for k € [1, K] do
k.d . ok
17 L ng" mm([hgig, E)J
18 | best < {nf4}

19 Update the miss ratio predictor and the value of error.
20 return best

o Our missing rate predictor achieves a prediction with an
average error of 1.8% when considering domain traffic
mixing, 59.6% lower than the baseline algorithm.

o With accurate predictions, our online traffic allocation
framework Iris reduces bandwidth costs by an average
of around 8.149%, which means about $10 million in
annual operating cost savings in CDNs.

« In the case of inaccurate predictions, Iris outperforms
other algorithms within a certain error range.

A. Applying Miss Ratio Predictor in Commercial CDNs

Evaluation Setup. To perform our evaluation, we collect pro-
duction traces from a large-scale commercial CDN system’s
servers from a metro area serving traffic for 22 domains over
a period of a month. There are over a million requests every
five minutes in the production traces. We set five minutes as
a time interval. To obtain statistics based on historical data,
we use two intervals of request information as a warm-up and
predict the missing ratio for the next 5 hours. We compare
the error of our miss ratio predictor (MRP) with the footprint
descriptor (FD) proposed in [14].

Overall Result. We first select a domain of video type and a
domain of image type respectively to conduct experiments on
predicting the miss ratio of a single domain. We then conduct
experiments with a mix of two domains and a mix of all
22 domains under a given allocation policy. Table I shows
the prediction errors of MRP and FD under various traffic
allocation strategies. We make the following observations.
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TABLE I
PERFORMANCE OF PREDICTORS

Domain traffic mixes  Average error of FD  Average error of MRP

image 1.513% 1.239%

video 1.131% 1.825%

(1/2) video 3.686% 1.476%
image + (1/2) video 5.140% 1.335%
(1/2) all domains 4.471% 1.804 %

First, when it comes to scaling and addition operations of
domain traffic, the prediction error of MRP is significantly
lower than that of FD. If we allocate all domains to an edge
server with probability 1/2, the average prediction error of
MREP is 1.8%, which is 59.6% more accurate than FD. Second,
as for the results for a single domain, the prediction error of
MREP for the image domain is slightly smaller than that of FD,
while the prediction error of the video domain is larger than
that of FD. This is because the user’s access to video data
has a strong burstiness, and the difference in the probability
distribution of access frequency between adjacent intervals
may be larger than that of other domains.

Impact of Cache Size. Fig. 5 demonstrates the impact of
cache sizes on MRP and FD. As expected, in the cases of var-
ious domain combinations, the capacity miss ratio decreases
as the cache size increases, resulting in a decrease in the total
miss ratio. The prediction accuracy of MRP and FD decreases
slightly with the increase in cache size, but the error of MRP
is always smaller than that of FD. When the cache is larger
than 10° bytes, the misses of user requests mainly come from
cold misses, which still have a certain error in the prediction
due to the unknown of future user request patterns.

MRP
(1/2) video

—— actual value
video

—— FD
image

0.81 0.81 0.81
0.6 1 0.6 1 0.6 1
0.2

T T : T T T 0.2 T T T
107 100 10" 107 100 10" 107 10° 10
image + (1/2) video (1/2) all domain

0.84 \ 0.8

0.6 1 0.6

miss ratio (%)

miss ratio (%)

0.4+ N 0.4

107 10° 101 108 10%° 10%2
cache size (bytes) cache size (bytes)

Fig. 5. The miss rate curves (MRCs) of domains on our CDN dataset.

Further Validation. We further conduct experiments with
MRP and FD on Google and YCSB datasets. Since there is no
domain information in these two traces, we treat Google trace
and YCSB trace as one domain traffic each. Fig. 6 illustrates
that the predictions of MRP are closer to the actual value than
those of FD in most cases. Note that the request sequence
patterns of these two traces are totally different. Requests for

the same file in Google’s trace usually arrive consecutively,
while in YCSB they prefer to arrive independently [15]. When
the cache size is less than 10° bytes, the request miss is
mainly caused by the capacity miss. The prediction of MRP
for the capacity missing ratio is based on the reuse distance
probability distribution in the recent intervals, so its prediction
is more accurate for Google’s access pattern than YCSB’s. But
Google’s access patterns may cause requests for new files to
be concentrated within an interval, thereby affecting MRP’s
prediction of cold miss ratios. Therefore, when the cache size
is greater than 10 bytes and the request misses are mainly
caused by cold misses, the prediction accuracy of MRP on
the Google’s trace is worse than that on the YCSB’s trace.

—— actual value MRP  —— FD

ycsb google
1.0

0.91

0.8

0.71

0.61

107 10° 101

google + (1/2) ycsb

1.04
0.94 NS
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0.8 So—

0.71

0.6
107 10° 101 107 10° 10t
cache size (bytes) cache size (bytes)

Fig. 6. The MRCs of domains on Google and YCSB datasets.

B. Bandwidth Cost Optimization

1) Evaluation Setup: We evaluate the performance of the
traffic allocation framework Iris with the same production
traces as Sec. IV-A. We choose a day as a charging period
and every 5 minutes as an interval. Experiments are conducted
independently on four weeks out of a month, and the results
are reported on average. The cache size of an edge server is set
so that the average traffic of one day is 70% of the cache size
to simulate a typical CDN. We assume that every edge server
in an area has equal bandwidth capacity and cache size. Due to
the higher construction cost of the center server, its bandwidth
unit price p. is 1.5 ~ 3 times p. in industry.

2) Baselines: We compare Iris with significant baselines
and their modifications:

Load-Balance (LB): It is the most widely used traffic alloca-
tion algorithm in industry [4]. When the domain traffic arrives,
the traffic is allocated to an edge server according to the ratio
between its bandwidth capacity and the total capacity. To meet
the granularity requirements of DNS, we round the allocation
ratio according to the granularity.

Cascara [1]: The key idea of Cascara is that when the
domain traffic is greater than the predicted charging bandwidth
C, select the capacity of edge servers below the charging
bandwidth to load traffic according to the given priority. If no
feasible solution exists, Cascara tends to increase Cy until a
feasible solution is found. Similar to that in LB, we do the
rounding in Cascara’s allocation policy.
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TABLE 11
PERFORMANCE OF ALGORITHMS

Algorithms LB BF Cascara GIA Iris

Edge cost 218.736  218.570 224418 216431 212.450
Midgress cost ~ 176.732  154.207 169.508  170.868  150.789

Total cost 395.468 3727780  393.926  387.299  363.239
Cost reduction — 5736%  0.389%  2.065%  8.149%

GIA [9]: It is designed for situations where traffic is not di-
visible. GIA uses an offline algorithm to estimate the charging
bandwidth of the current charging period. Then GIA greedily
allocates the entire traffic to the edge servers with the estimated
maximum uncharged capacity. In our experiments, we make
granular domain traffic as an indivisible traffic flow.
Baseline-Fit (BF): It is an intuitive way to minimize the
midgress cost, which always allocates the traffic of a domain
to the same edge server as much as possible to improve the
hit ratio of user requests on edge.

3) Experiment Results: We first compare the average band-
width cost (in dollars) of each algorithm under the default
configuration, and then explore the impacts of allocation gran-
ularity, prediction error and other factors on the performance.
Overall Result. Table II illustrates the average performance of
algorithms under the data-trace from our large-scale commer-
cial CDN collaborator. It should be noted that all algorithms
are online. We define cost reduction as the percentage of
bandwidth cost reduction of algorithm A compared to LB:
% x 100%. First of all, it can be observed that the
cost reduction of Iris is reduced to 8.149%, which greatly
reduces the bandwidth cost of traffic allocation compared
with 5.736%, 0.389%, and 2.065% of the BF, Cascara, and
GIA algorithms. This means that Tris can save more than
$800,000 per month in operating expenditure of CDNs over
the LB currently used in industry. Secondly, as expected,
except for Iris, BF can achieve a lower midgress cost, while
other algorithms are insensitive to midgress traffic, and their
midgress costs are higher. Thirdly, due to the full use of the
free-of-charge intervals, Iris achieves the lowest edge cost
compared to other algorithms, followed by the GIA algorithm.
However, GIA lacks consideration of the trade-off between
edge cost and midgress cost, resulting in high midgress cost,
as does the Cascara algorithm.

Impact of the Number of Edge Servers. We keep the total
bandwidth capacity of the edge servers constant and explore
the impact of the number of edge servers K on the bandwidth
costs. Each edge server has equal bandwidth capacity. Fig. 7
shows that ITris can effectively utilize the increased number
of edge servers to reduce edge costs. When K = 1, all user
requests can only be allocated to one edge server, so the
bandwidth costs of all algorithms are equal. With the increase
in the number of edge servers, Iris makes good use of
the free-of-charge interval by using the green zones of edge
servers in turn. However, when the number of edge servers is

increased to 8, the bandwidth capacity of each edge server is
too small, resulting in few feasible allocation policies and a
slight increase in the bandwidth cost.

[ Cascara Edge-cost
[ Cascara Midgress-cost

BF Edge-cost [ GIA Edge-cost
BF Midgress-cost [ GIA Midgress-cost

LB Edge-cost [ Iris Edge-cost
LB Midgress-cost [ Iris Midgress-cost
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Fig. 7. Impact of K. Fig. 8. Impact of unit price.

Impact of Unit Price. Fig. 8 explores the impact of the unit
price of center and edge servers on bandwidth costs of all
algorithms. When the ratio of the unit price of the center server
to that of edge servers, the midgress costs increase accordingly.
Iris always achieves the lowest total bandwidth cost through
a trade-off between edge costs and midgress costs. When the
ratio is 10 : 1, Iris increases the edge cost by about 0.4%,
and the total cost is reduced by 3.68%.

Impact of Allocation Granularity. Fig. 9 demonstrates the
impact of allocation granularity on the performance of all
algorithms when the charging period is six hours. As the
allocation granularity increases, the performance of Iris has
a certain degree of deterioration, mainly because the increment
in allocation granularity will limit the allocation policy of
our algorithm. When the granularity is less than 1/10, the
performance of Iris is always the best.
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Fig. 9. Impact of granularity. Fig. 10. Impact of prediction error.
Impact of Prediction Error. Note that both the GIA algorithm
and Iris need to use historical data to predict the charging
bandwidth as a key parameter. Therefore, we study the effect
of the prediction error of charging bandwidth on algorithms.
From Fig. 10, we can see that when the predicted charging
bandwidth is in the range of [90%, 110%] of the accurate
value, ITris yields the best performance among all algorithms.
An interesting phenomenon is that better performance can be
obtained if the sum of the red lines of edge servers in Iris is
set to 92% of the predicted charging bandwidth. However, the
curve on the left of 92% is steeper than the curve on the
right, which means that under this scheme, if the predicted
charging bandwidth is lower than expected, the performance
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of Iris may drop sharply. Therefore, to improve the fault
tolerance rate and avoid excessive use of the red zones of edge
servers, Iris conservatively sets the sum of the red lines of
edge servers as the predicted charging bandwidth.

Impact of Bandwidth Capacity. In Fig. 11, we show the
results of algorithms when the edge servers’ bandwidth ca-
pacity configuration varies. The right half of Fig. 11 illustrates
that when the bandwidth capacity of edge servers is doubled,
the bandwidth costs of Iris, Cascara, and GIA are reduced.
Iris is relatively stable in the two capacity ratio of edge
servers, while the GIA fluctuates greatly. The reason is that
the GIA algorithm is aimed at the situation where the domain
traffic is indivisible, so if some edge servers are large enough
to accommodate all the domain traffic, the algorithm works
well, otherwise the cost may increase.
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Fig. 11. Impact of capacity. Fig. 12. Impact of cache size.

Impact of Cache Size. Comparing the right half of Fig.
12 with the left half, it can be found that when the cache
size is doubled, the midgress cost of algorithms decreases
significantly, and Iris always performs the best. When the
cache size ratio of edge servers is 4:2:1, the bandwidth cost of
algorithms increases slightly. The reason is that some requests
are allocated to edge servers with smaller caches, resulting in
more capacity misses and increased the midgress cost.

V. RELATED WORKS

We here give a survey of the mostly closed work in the
literature on traffic allocation in CDNss.
Optimization of edge cost. In industry, the most widely
used traffic allocation algorithm in CDNs is load balancing
[4], which only focuses on ensuring that servers are not
overloaded. Under the 95th charging scheme, an intuitive
way to optimize bandwidth costs is to accumulate requests
to certain time intervals and process them together so that the
traffic bandwidth at most intervals is as low as possible [16].
Due to the difference in traffic peak times between regions
with large time zone differences, Laoutaris et al. [17] propose
to transfer data by taking advantage of already-paid-for off-
peak bandwidth resulting. However, these solutions are only
suitable for delay-tolerant backup data transmission. When
user requests need to be allocated and satisfied by CDNs in
real time, the optimization problem for 95th charging has been
proved by Goldenberg et al. [9] to be NP-hard. Patrick et al.
[18] design a scalable decentralized traffic allocation system
DONAR to avoid transmission delays and optimize bandwidth

costs at the same time. Paper [19] proposes to use the Shapley
[20] value to guide the allocation of traffic bandwidth. Jalaparti
et al. [21] model percentile-based usage costs as a compact set
of linear inequalities and use the average of the top 10% link
costs to estimate the edge cost. But Singh ef al. [1] find that
the correlation coefficient is weak in some links and design
Cascara to reduce the percentile costs. Chen et al. [8] further
consider the traffic allocation problem under the allocation
granularity and deviation caused by the DNS mechanism.

Prediction and optimization of midgress cost. There has
been a significant amount of research on cache management
policies to reduce the midgress cost in CDNs by minimizing
cache miss ratio, including [22]-[25]. These works on cache
management are complementary techniques to traffic alloca-
tion. Using a midgress-sensitive approach to traffic allocation
provides additional benefits than using cache management
alone. By modeling the caching requirements of CDNs’ traffic
and predicting the best way to assign traffic, we can improve
caching efficiency and provide an acceptable miss ratio at
a reasonable bandwidth cost [14]. Mattson et al. [11] first
propose a caching model based on stack distance, which is
useful to compute miss ratio curves that plot the cache hit ratio
as a function of cache size. Subsequent studies [26]-[28] have
improved the time and space overhead of the algorithm in [11].
In the context of memory caching, Chandra et al. [29] propose
three cache composition models to predict the impact on cache
hit ratio when two non-overlapping applications run together
in a shared cache. Hu er al. [30] develop a kinetic model of
LRU cache when multiple traces share the cache, based on the
average eviction time (AET). Sundarrajan et al. [14] design a
traffic descriptor that supports a wider range of combinations
of traffic classes, including addition and scaling. Based on the
traffic descriptor, they design a traffic allocation algorithm that
minimizes midgress cost [4]. However, their method can not
work due to the nonlinearity of the 95th charging model.

VI. CONCLUSION

In this work, we study the bandwidth cost optimization
problem for percentile charging in CDNs. We first provide
an insight that previous algorithms ignore the trade-off be-
tween edge cost and midgress cost in CDNs, which can be
optimized by predicting missing ratios when allocating traffic.
Inspired by this, we develop a midgress-sensitive online traffic
allocation framework, Iris, that achieves the prediction
error of miss ratio within 1.804% and cost savings within
8.149% compared to the state-of-the-art baselines. We conduct
comprehensive experiments on real data-trace from a global
commercial CDN system. Iris significantly performs well
even after increasing the adverse effects of prediction error and
allocation granularity, potentially saving millions of dollars
monthly for our commercial CDN collaborator.
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APPENDIX A
PROOF OF THEOREM 1

Proof. The proof is by reduction from the NP-complete Set-
Fartition Problem, which partitions an array of numbers into
two subsets such that the sum of each of these two subsets is
the same. Let S = {s1,892,-+-,sKk} be the set of numbers.
Set m = Efil s;. Then consider a CDN system with
K edge servers whose bandwidth capacity is equal to the
elements in S (Vi € [1,K],B; = s;) and a traffic sequence
V =(0,0,---,%,%). V represents the traffic of 20 intervals.
The first 18 values of V are all 0, and the last two values are
half the sum of the elements in set S.

Since the miss ratio is a constant 3, the midgress traffic for
the last two intervals is %’6 regardless of allocation policies.
Under 95th charging scheme, the midgress cost is % It
can be deduced that the Set-Partition Problem has solutions if
and only if the given traffic allocation problem has a solution
with a total cost mgpc, that is, edge costs of 0. If we have
a polynomial-time algorithm to the traffic allocation problem,
we can solve the Set-Partition Problem by checking whether

m

the cost returned by the algorithm is equal to ™5P< or not. [

APPENDIX B
PROOF OF LEMMA 1

Proof. In the preceding context, we give the definition of
cold miss ratio, which is equal to >, a;/l when we get the
certain request sequence p on a cache. Now, we consider vy
that represents the probability of each file being assigned, and
it affects both the sequence length and the number of cold
misses. For the new empty cache, its expectation of sequence
length is ' = 1x~. And for every file which is requested ¢
times, the probability that it isn’t assigned to the new cache is
(1 —~)% So it is assigned with probability 1 — (1 —~)* and
the number of cold misses is a;[1 — (1 —7)?]. Thus, the cold
miss ratio on the new empty cache:

e S
:Zfi'#
O
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